• 网站首页
  • 期刊简介
  • 投稿指南
  • 编辑委会
  • 版权协议
  • 联系我们
  • 期刊订阅
引用本文:[点击复制]
[点击复制]
【打印本页】   【在线阅读全文】    【下载PDF全文】   【查看/发表评论】  【下载PDF阅读器】  【关闭】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1066次   下载 次  
基于EEMD和改进Elman神经网络的地球变化磁场短时预测
牛超,卢世坤,祁树锋
0
字体:加大+|默认|缩小-
()
摘要:
针对地球变化磁场时间序列的混沌特性,提出了一种集成经验模态分解(ensemble empirical mode decomposition,EEMD)和改进Elman神经网络的地球变化磁场预测模型.首先,利用EEMD将非平稳的地球变化磁场时间序列分解为一系列具有不同特征尺度的本征模态函数(intrinsic mode function,IMF);然后,针对每一个IMF分别建立改进Elman神经网络模型,选择各自适合的最优模型参数;最后,以地磁台站实测的地球变化磁场数据为研究对象,并与基于单一Elman神经网络预测模型相比较,结果表明,EEMD-改进Elman神经网络模型的预测值能紧跟地球变化磁场的变化趋势,且明显优于基于单一Elman神经网络的模型,体现出更好的预测效果.在地磁Kp3时,预测3h平均绝对误差为1.74nT.
关键词:  地球变化磁场  集成经验模态分解  改进Elman神经网络  预测模型
DOI:
基金项目:国家自然科学基金(40974037)
()
Abstract:
Key words:  

版权所有:《河北师范大学学报自然版》编辑部
主办: 地址: 邮政编码:
电话: 电子邮箱:
技术支持:北京勤云科技发展有限公司